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Abstract 

Using a projection method of de Bruijn [Proc. K. 
Ned. Akad. Wet. Ser. A (1981), 43, 39-66], Whittaker 
& Whittaker [Acta Crysr (1988), A44, 105-112] 
obtained nonperiodic tilings of the plane with n-fold 
rotational symmetry, n = 5 ,  7, 8, 9, 10 and 12. 
However, when their method was applied to the cases 
of 3-, 4- and 6-fold rotational symmetry it produced 
periodic tilings. This might be taken as circumstantial 
evidence that 3-, 4- and 6-fold rotational symmetry 
is incompatible with nonperiodicity. It is demon- 
strated that they are compatible by constructing 
quasiperiodic tilings with only 3-, 4- and 6-fold rota- 
tional symmetry. This approach uses basic eigenvalue 
methods of matrix theory. 

Introduction 

Whittaker & Whittaker (1988) recently used a projec- 
tion method ofde  Bruijn (1981) to obtain nonperiodic 
tilings of the plane with n-fold rotational symmetry, 
n =5,  7, 8, 9, 10 and 12. Interestingly, when their 
method was applied to the cases of 3-, 4- and 6-fold 
rotational symmetry it produced periodic tilings. It 
might be conjectured that nonperiodicity is incompat- 
ible with 3-, 4- and 6-fold rotational symmetry, mirror- 
ing the incompatibility of periodicity with 5-fold rota- 
tional symmetry. We settle this conjecture here by 
constructing quasiperiodic tilings with n-fold (but 
not 2n-fold) rotational symmetry for n = 3, 4 and 6. 

Our approach is related to Roger Penrose's infla- 
tion method, however, we give a precise definition of 
inflation and deflation in terms of a matrix eigenvalue 
problem which determines each tiling. Thus, our 
secondary motivation is to introduce techniques from 
linear algebra into the study of quasiperiodic tilings. 

We give formal proofs in § 1 for two reasons. 
Firstly, our methods are elementary, so that the widest 
possible audience can see what we are doing. 
Secondly, the relatively new field of nonperiodic 
tilings is conspicuous in its shortage of proven results 
(Griinbaum & Shephard, 1987). 

The generalized Penrose tilings of Whittaker & 
Whittaker (1988), as well as the 8-fold rotationally 
symmetric tilings of Watanabe, lto & Soma (1987) 
can all be obtained as special cases using the eigen- 
value approach developed in this paper. In fact, the 
method is quite general. 

I. Fourfold rotational symmetry 

Recent work in quasicrystals has emphasized 5-fold 
rotational symmetry for good empirical and theor- 
etical reasons. However, it is also reasonable to 
investigate quasiperiodic tilings using building blocks 
more elementary than the relatively exotic Penrose 
tiles: for example, squares and 45 ° rhombi. 

To construct quasiperiodic tilings of the plane with 
only 4-fold rotational symmetry we use as prototiles 
(Griinbaum & Shephard, 1987) unit-edged squares 
and unit-edged rhombi with 45 ° vertex angle. These 
are placed edge to edge in finite assemblies called 
tiles. Square prototiles are permitted to be cut along 
a diagonal just so long as the cut-diagonal edge 
appears on the outer boundary of the tile. This is in 
anticipation of matching the half-square with a half- 
square belonging to another tile, thus reproducing a 
square prototile. Our first tiles (as well as all succeed- 
ing generations) will also be squares and rhombi, that 
is, larger replicas built from the prototiles. The 
constructions are shown in Fig. 1. 

St already has the 4-fold rotational symmetry that 
will be inherited by all succeeding Sn and, ultimately, 
by the limiting tiling of the infinite plane. The number 
of each type of prototile used in R t  and S~, as well 
as the side length A = 1 +21/2 of both first-generation 
tiles, are obtained as solutions to the inflation 
problem, i.e. the eigenvalue problem 

M2a = Aea (1) 

where a -- (r~, s,)7- is a given eigenvector of prototile 
areas r t = area (R~) = 1/2 ~/2, S~ = area (Sl) = 1. 

Different from the usual eigenvalue problem, the 
eigenvector is given in advance and the unknowns 
are integer elements of the matrix M and the largest 
eigenvalue A of M. Solved successfully, (1) becomes 
a combinatorial area identity specifying how many 
R~'s and how many Sl's make one R2 and one $2 

(a) (b) 

Fig. 1. (a) First-generation square $1. (b) First-generation 
rhombus R~. 
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with side length A. Note that r 2 = A2rl and s2 = A2sl. 
The matrix-vector interpretation of Fig. 1 becomes 

r, 11)  (3 4 

Fig. 1 is literally a picture of this eigenvalue problem, 
indicating that three rhombi and two squares build 
a larger rhombus (with side length A = 1 +21/2) and 
that four rhombi and three squares build a larger 
square. The entries of the matrix M (as opposed to 
M 2) also have an interesting combinatorial interpre- 
tation, brought out in the proof of nonperiodicity, 
below. 

The deflation problem 

A - 2 M 2 a  = a (2) 

is simply a change in point of view, and a solution 
to (2) gives numerical information for subdividing a 
unit square and rhombus into subsquares and 
subrhombi. 

It should be stressed that (1) and (2) are area 
identities. Self-similar replication of the patterns of 
Fig. 1 will produce larger and larger squares and 
rhombi, but we need to prove that these nth-gener- 
ation objects are valid tiles. The reason is the use of 
the half-squares on the boundaries. If half-squares 
fail to match in the interior of the resulting object, it 
is a violation of the condition that all interior pro- 
totiles be either squares or rhombi. For example, Fig. 
2 is an illustration of a second-generation rhombus 
free of such interior violations. 

Observe that the edges of the rhombus in Fig. 2 
are partitioned into distance units of 1 or 21/2, and 
that every edge sequence of this rhombus is E2= 
(1,2 '/2 , 1,21/2 , 1). In fact, equality of the edge 
sequences is necessary and sufficient to avoid 
boundary mismatches throughout the construction 
process. E2 has the useful property of palindromy: 
the sequence is the same when read from right to left 
as it is when read from left to right. However, this 
need not be true in general so that the edges of 
nth-generation tiles must be oriented in order to 
specify uniquely the edge sequences. 

We now give a recursive procedure which generates 
a quasiperiodic tiling of the plane with 4-fold rota- 
tional symmetry. Suppose that at the nth stage of 
construction we have the nth-generation rhombus 

Fig. 2. The second-generation rhombus is a self-similar replica of 
Fig. l(b).  

and the two versions of the nth-generation square 
shown in Fig. 3. 

Fig. 3(c) is obtained from (b) by reflection about 
the central vertical axis (and vice versa). Let D, 
denote the sequence of l ' s  and (2~/2)'s read along the 
diagonals of the nth-generation square of Fig. 3(b). 
Our working assumption, the induction hypothesis, 
is that both diagonal sequences are equal and palin- 
dromic (signified by the double arrowheads). The 
reflection that transforms (b) into (c) does not change 
this. All other edge sequences in Fig. 3, denoted by 
E,,  are assumed to be equal when read in the direction 
of the orientations shown in Fig. 3. Note that all the 
conditions which we are assuming to be true at this 
stage of construction are true in generation 0 (the 
prototiles) and generation 1 (Fig. 1). Now we build 
the next generation's tiles, Fig. 4, using the nth- 
generation tiles. Half-squares are cut from the square 
tiles S, just as they were from the prototiles So. 

We have all boundary edge sequences E,+l = 
(D, ,  E,)  identical, as well as equal and palindromic 
diagonal sequences D . +  1 = (E-~n, D,,, E,,), where 
denotes the edge sequence E, read in reverse order. 
We obtain the two versions of the square tile, Figs. 
4(b) and (c), with their counterclockwise and clock- 
wise edge orientations, respectively. 

In other words, all the features which were assumed 
to be present in the nth generation are transmitted 
successfully to the ( n +  1)th generation. Since these 
features are present in generations 0 and 1, as 
remarked above, all generations of tiles have them. 
That is, we can be certain that there is no unmatched 
half-square prototile in the interior of any tile in any 
generation as constructed above. Several generations 
of growth are shown in Fig. 5. 

The tiling of the infinite plane is obtained as the 
limit of a square tile as n --) oo. This infinite tiling has 

En F~ En 

(a) (b) (c) 

Fig. 3. The induction hypothesis: preparing the transition to the 
(n + 1 )th generation. 

En D n Dn E n 

~, < Dn .:~ En ,~, /~' • 

(a) (b) (c) 

Fig. 4. The induction step: verifying the induction hypothesis in 
the (n + l) th generation. 
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4-fold rotational symmetry but, as we show below, it 
does not have the translational symmetry needed for 
periodicity. Although not periodic in a translational 
sense, it does hav6 repetitiveness in a dynamic sense. 
Each generation has the same large-scale structure 
shown in Figs. 1 and 4. 

To see that the tiling is nonperiodic, suppose, for 
a contradiction, that it is periodic. Because of the 
4-fold rotational symmetry, the tiling must be an 
infinite 'chessboard'  made from sufficiently large 
(identically patterned) squares. Thus the diagonal 
sequence D (of terms 1 and 21/2, obtained as the limit 
of D, )  must be a periodic sequence. To show that (1 ll) 
this is impossible, we use the matrix M = 2 to 

answer two basic questions: (1) How many terms are 
there in a diagonal sequence D~ ? (2) How many of 
these terms are l ' s?  Recall the relations E,,+l = 
(D,,, E,,) and D,,+t = ('E--~-~, D,,, E,,). If we let e,, (d,,) 
stand for the number of terms in E,, (D,,), then clearly 

d. + i 1 d,, " 

This simple recurrence system is easily solved to get 

d,, -~ ( 1/2 + 1/2t/2)(1 + 2t/2) ", 

where ~- denotes equality when rounded off to the 
nearest integer. For example, when n - - 4  we have 
d4 = 41 and one counts exactly 41 prototiles along the 
diagonal in Fig. 5. Similarly, if we let en and 8~ denote 
the number of  l ' s  in E,  and Dn, respectively, then en 
and 8, also satisfy (3), but with different initial values 
el = 1 and 81 = 2  (as opposed to el =2  and d~ =3) .  

For n >-- 1, 

8 .  --- (1 /21 /2 ) (  1 + 2~/2) n. 

If the diagonal sequence D is periodic, the ratio &,/dn 
should approach a limit which is a rational number 
as n tends to infinity. However, this ratio approaches 
the irrational number 2 -  21/2, proving that D cannot 
be periodic. A more familiar argument would be to 
show that the ratio of squares to rhombi tends in the 
limit to an irrational number; but here we wanted to 
bring out the role of the matrix M. 

It is also easy to see why there are uncountably 
infinitely many different tilings which can be pro- 
duced by the recursive method of  Fig. 4. Beginning 
with generation 1 we always have a choice of two 
square tiles to use at the center of our evolving tiling: 
one with clockwise orientation, the other counter- 
clockwise. The choice will determine how the rhombic 
tiles are positioned. Therefore, such a tiling is the 
unique outcome of an infinite sequence of choices 
among two possibilities c and cc, i.e. is in one-to-one 
correspondence with an infinite sequence of two sym- 
bols. As is well known, the collection of all such 
sequences is uncountably infinite. 

A simple modification of  the pattern of  Fig. l ( a )  
gives quasiperiodic tilings which have only 2-fold 
rotational symmetry (Fig. 6). 

(a) 

Fig. 5. Fourth-generation square with 4-fold rotational symmetry. 

(b) 

Fig. 6. (a) using second-generation tiles, a modification of Fig. 
l(a) results in (b) a third-generation square with 2-fold 
rotational symmetry. 
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In concluding this section we mention the case of 
8-fold rotational symmetry (Watanabe, Ito & Soma, 
1987) obtained by using eight nth-generation rhombi 
to form an 8-pointed star, Fig. 7. 

2. Three- and sixfold rotational symmetry 

The general outline of our method has been given in 
§1. We create self-similar tiles by solving an eigen- 
value problem that tells us how many of each type 
of tile to use and sheds light on how to configure the 
boundaries of the next generation's tiles. In this sec- 
tion we construct quasiperiodic tilings with 3-fold 
and 6-fold rotational symmetry using three unit-edged 
prototiles (30, 60 and 90 ° rhombi). 

The eigenvector of prototile areas is a =  
(1/2, 31/2/2, 1) r. This time we specify the maximum 
eigenvalue A = 2 + 2 c o s ( T  r/6) in advance to take 
advantage of the aforementioned property of palin- 
dromy (also exploited heavily by Watanabe et ai. 
1987). That is, we are looking for first-generation 
tiles that have a half-60 ° rhombus sandwiched 
between two unit prototiles along the edges, Fig. 8. 
The length of the cut diagonal is 2 cos (7r/6), hence 
each first-generation tile will have edge length 
2+2cos  ( ~ / 6 ) = A .  Now, however, it is not easy to 
find the integer-valued matrix M needed to construct 
the first-generation tiles. In fact, a mathematical 
theory is necessary to determine M. An introduction 
to this theory is presented by Clark & Suryanarayan 
(1991). However, the reader can easily read the rows 
of M 2 from Figs. 8(a), (b) and (c). 

For example, Fig. 8(a) indicates that the first row 
of M 2 is (5, 4, 1), for the five black, four gray and 
one white prototiles, respectively. At first glance the 

(a) 

(h) 

Ic) 

Fig. 8. First-generation tiles. 

Q 
(a) (b) 

Fig. 7. 8-fold rotational symmetry. 

(c) (d) 

(e) 

Fig. 9. First-generation models with 2-, 3-, 4-, 6- and 12-fold 
rotational symmetry. 
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(a) (b) 

Fig. 10. (a) 3-fold rotational symmetry, 2nd generation. (b) 6-fold rotational symmetry, 2nd generation. 

projections and indentations of Fig. 8(c) make it look 
like a possible violation, but in fact it is simply a 
generalized square, i.e. a new aspect of the solution. 
The reader will see how the projections and indenta- 
tions work in Fig. 10. 

As first-generation models for tilings with 3- and 
6-fold rotational symmetry we use the configurations 
of Figs. 9(b) and (d), respectively. We go to the next 
generation, Fig. 10, by replacing the prototiles of Fig. 
9 with the tiles of Fig. 8. We could do the same in 
Figs. 9(a), (c), (e). 

The proofs of the validity (i.e. absence of interior 
edge violations) of the tilings of the infinite plane 
obtained by substituting higher-generation tiles into 

the configurations of Fig. 9 and passing to the limit, 
as well as the uncountable infinity of these tilings, 
follow the line of arguments given in §1. 
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Abstract 

The effects of polarization on X-ray multiple diffrac- 
tion are investigated experimentally. Polarized and 
unpolarized incident beams are used in multiple 
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diffraction experiments for GaAs and Ge crystals. All 
the three-beam diffractions in a 360 ° azimuthal rota- 
tion of the crystals are analyzed for diffracted 
intensities and phase determination, based on the 
article by Chang & Tang [Acta Cryst. (1988), A44, 
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